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Chapter 1

Low Pass Filter

1.1 Problem Selection

The main quantity required for determining which problem I was assigned is
found using this expression

F1 − F2 + Fl + L1 − L2 − Ll

Substituting the letters from my name (D, A, L, A, Y, B, respectively), this
expression yields 4− 1 + 12 + 1− 25− 2 = −11. Plugging this quantity into the
expression

1 + |q| mod 9

yields question 3 as my assigned set of filter specifications.

1.2 Design Problem

My problem requires a low-pass filter design. The passband region should go
up to 600 Hz, and the passband magnitude should not stray from 20 dB by
more than ±3 dB. The design asks that the filter should attenuate frequencies
of greater than 9 kHz by more than 15 dB, so any frequency greater than 9 kHz
should have a magnitude ≤ -15 dB. For the purposes of the filter design, it’s
useful to convert these ordinary frequency values to angular frequency values.

600 Hz ≈ 3770 rad s−1

9 kHz ≈ 56.55 krad s−1

1.3 Circuit Selection

1.3.1 First Order LPF

The first circuit examined was the following first order low-pass filter circuit.
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Figure 1.1: First Order Low Pass Filter

The transfer function of this circuit
is given by

H(s) =
Kωo

s+ ωo
(1.1)

where

K = − Rf

Rin

and

ωo =
1

RfC

ωo is the half-power frequency, and
the frequency where the magni-
tude will begin sloping down at -

20dB/dec. Because the design specifications allow for the variation of the mag-
nitude by ±3dB, we can set this frequency equal to 3770 rad s−1, the end of
our pass band. Furthermore, the pass band specification requires a magnitude
of 20dB, so we set K = 10 to satisfy this property. Now, the magnitude must
slope down fast enough for the circuit to successfully attenuate frequencies over
9kHz to less than -15dB.

10
2

10
3

10
4

10
5

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency  (rad/sec)

−10

−5

0

5

10

15

20

System: g
Frequency (rad/sec): 3.76e+003
Magnitude (dB): 17

System: g
Frequency (rad/sec): 5.69e+004
Magnitude (dB): −3.57

M
ag

ni
tu

de
 (

dB
)

Figure 1.2: First Order Bode Plot

This magnitude response function satisfies the ±3dB limit for passband
frequencies, but does not decay quickly enough for frequencies above 9kHz
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(56.55 krad s−1) to have magnitude below -15dB. Furthermore, although we su-
perficially set the gain K= 10, a closer look at the transfer function parameters
shows that K is a negative ratio of two resistances, which can never be non-
negative. A higher order circuit is necessary.

1.3.2 Second Order LPF

A direct second order op-amp filter would yield a negative gain, so cascading
two of the first order filters tried in the last example may be feasible. This will
result in a filter with the following transfer function:

H(s) =

(
K1ωo1

s+ ωo1

)(
K2ωo2

s+ ωo2

)
=

K1K2(
1 + s

ωo1

)(
1 + s

ωo2

) (1.2)

where

K1 = −Rf1

Ri1
,K2 = −Rf2

Ri2
, ωo1 =

1

Rf1C1
, ωo2 =

1

Rf2C2

The two corner frequencies allows the asymptotic bode plot to have a region
with slope −20 dB d−1 and a region with slope −40 dB d−1. With three degrees
of freedom (the two corner frequencies and the gain), this circuit is certainly
able to satisfy the given specifications.

1.4 Passband Gain and Corner Frequency De-
termination

In choosing the corner frequencies, we have the opportunity to define a range
directly after the pass band with −20 dB d−1, and then increase this asymp-
totic slope to -40 at some higher frequency to satisfy the specifications. To
try and determine the corner frequencies we need, we can first set them equal
to eachother and solve an equation for an asymptote that passes through our
needed frequencies. This asymptote will have slope -40 (both corner frequen-
cies are equal so the -20 slope compounds immediately), pass through 20 dB at
f = 600 Hz, and through -15dB at f = 9 kHz. The equation of this line is

20 = −15− 40 log
f

9000

Solving this equation for f yields the following process:

35 = −40 log
f

9000
⇒ f

9000
= 10−

7
8 ⇒ fc ≈ 1.200 kHz or 7.540 krad s−1

(1.3)
Now, we must write the magnitude of our original transfer function as a function
of f .

M(f) =
K1K2√(

1 +
(

f
fo1

)2)(
1 +

(
f
fo2

)2)
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The wanted passband gain is 20 ±3dB, so we set K1K2 = 10 to satisfy this.
Plugging in the low and high frequency and our duplicate corner frequencies
and converting to dB gives us

M(600) =
10(

1 + 600
1200

2
) = 8⇒ 20 log 8 = 18.06 dB

M(9000) =
10(

1 + 9000
1200

2
) = .1747⇒ 20 log .1747 = −15.156 dB

These values are within the design constraints, but just barely. The magni-
tude of the high end frequency is just below the constraint of -15dB, so if we
experiment around the values of these center frequencies we can achieve better
results.

Trial fo1(kHz) fo2(kHz) MdB at 600Hz MdB at 9kHz Comments
1 1.2 1.2 18.06 -15.16 Bad at low end
2 1.0 1.4 17.93 -15.40 Okay at both ends
3 1.0 1.3 17.83 -16.03 Good at both ends

Thus, values of fo1 = 1 kHz and fo2 = 1.3 kHz can be used.

1.5 Component Value Selection

To choose resistor values for the circuit, we examine the necassry passband gain
and what it is equal to in terms of circuit components:

K =
Rf1

Ri1
∗ Rf2

Ri2
(1.4)

If we set the Ri values equal to 1 kΩ, we can set the Rf values to the available
1.8 kΩ and 5.6 kΩ and achieve a gain K = 10.08

Try 1: Using ωo1 = 2000π and Rf1 = 1.8 kΩ, we get C1 ≈ 8.842× 10−8 F.
If we use the standard capacitor value of 0.082 µF we get ωo1 ≈ 6.613 krad s−1 ≈
1.052 kHz. Using ωo2 = 2600π and Rf2 = 5.6 kΩ, we get C2 ≈ 2.186× 10−8 F.
If we use the standard capacitor value of 0.022 µF we get ωo2 ≈ 8.117 krad s−1 ≈
1.291 kHz. These component values give us the following magnitudes:

fo1(kHz) fo2(kHz) Gain MdB at 600Hz MdB at 9kHz
1.052 1.291 10.08 17.928 -15.658

Thus, the full set of parameter values are:
Rf1 = 1.8 kΩ, Ri1 = 1 kΩ and C1 = 0.082 µF
Rf2 = 5.6 kΩ, Ri2 = 1 kΩ and C2 = 0.022 µF
K = 10.08, fo1 = 1.052 kHz, and fo2 = 1.291 kHz
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1.6 Transfer Function

The final transfer function can be determined by plugging the parameters found
in section 1.5 into eq. (1.2):

H(s) =
10.08(

1 + s
6613

) (
1 + s

8117

) (1.5)

1.7 Bode Diagram
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Figure 1.3: Magnitude Response Characteristic
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The plotted magnitude and phase response functions show that the designed
filter satisfies the required specifications. The plot also shows the half power
frequency fc ≈ 742.8 Hz, which is circled on figure 1.3.

1.8 Sensitivity Plot

We can do a rudimentary sensitivity analysis by arbitrarily altering the values
of varios circuit components to partially simulate the value tolerances of real-
world circuit components. In this basic study, we will alter Ri1 and C2 in the
circuit by 5% of their nominal value. Their new values will be

Ri1 = 950 Ω, and C2 = 0.0209µF

This change yields this altered gain and these corner frequencies:

K = 10.61, ωc2 = 8544.1 rad s−1, fc2 = 1.360 kHz

And the magnitude response graphed in figure 1.5.
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Chapter 2

High Pass Filter

2.1 Transfer Function Determination

Figure 2.1: Second Order High Pass Filter

In section 1.7, we determined the half power frequency of our low-pass filter
to be

fc = 742.8 Hz ωc = 4.667 krad s−1

Now, we may use this frequency and our original transfer function to derive a
high pass filter from our original circuit. We perform the following substitution:

s⇒ ω2
c

s

H(s) =
K(

1 + s
ωo1

)(
1 + s

ωo2

) ⇒ H(s) =
Ks2(

s+
ω2

c

ωo1

)(
s+

ω2
c

ωo2

) (2.1)

Where K = 10.08, ωo1 = 6.613 krad s−1, and ωo2 = 8.117 krad s−1. This transfer
function can be fulfilled by a second order high pass filter, shown in the figure
2.1.
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2.2 Transfer Function Plot
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Figure 2.2: Magnitude Response Characteristic of High Pass Filter

This transfer function can be plotted using MATLAB, similarly to the low-
pass filter function. Plotting a point at the original cutoff frequency at 17dB
reveals that the original cutoff frequency is identical to the new cutoff frequency.
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Chapter 3

Scaled Low Pass Filter

3.1 Cutoff Frequency Scaling

The design specifications require a 3dB frequency 10 times that of the prior 3dB
frequency. The new cutoff frequency should be

fc = 7.428 kHz ωc = 46.67 krad s−1

Now, we use the following scaling equations:

C ′ =
C

KmKf
, R′ = KmR

Where Km and Kf are the impedance and frequency scaling constants, respec-
tively. Kf = 10, because we require a new cutoff frequency 10 times higher
than our pre-scaled circuit. Our original capacitance values aren’t too small, so
we have room to decrease them further if necessary. Because of this, we can set
Km = 1, to keep the resistances constant and decrease the capacitances by a
factor of 10 in total. This gives us new component values:

Rf1 = 1.8 kΩ, Ri1 = 1 kΩ and C1 = 8.2 nF
Rf2 = 5.6 kΩ, Ri2 = 1 kΩ and C2 = 2.2 nF
K = 10.08, fc1 = 10.783 kHz, and fc2 = 12.918 kHz
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3.2 Frequency Response

Plugging these values into our low pass filter transfer function and computing
the bode plot using MATLAB gives us the magnitude response plot in figure
3.1. The circled frequency is the new fc ≈ 7.530 kHz. This is approximately 10
times the cutoff frequency of the original low-pass filter.
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Figure 3.1: Magnitude Response Characteristic of Scaled Filter
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Conclusion

This extensive filter design project solidified my theoretical understanding of fil-
ters. I achieved results that were within the design constaints after extensively
manipulating transfer functions and translating theoretical equations into real-
life resistance and capacitance values. The low-pass filter schematic contained
in this report is a concise and feasible solution to the specified design prob-
lem. Working on this project helped to familiarize myself with various aspects
of filter design, including the several iterative processes that allowed me to
feel how altering certain component values would affect the filter’s frequency
response characteristic. Furthermore, the sensitivity analysis, although rudi-
mentary, showed that real-life errors in component values play an important
role in comprehensive feasibility studies of filter designs. Finally, the two filter
transforms performed at the end of this report showed two powerful methods
of manipulating a transfer function and extracting component values to derive
two entirely different filter circuits and frequency response characteristics. This
filter design project offered great first experience into the realm of real-world
Electrical Engineering.
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Appendix A

Matlab Code

A.1 Component Guess-And-Check Calculator

fc1 = 1052;
fc2 = 1291;
low = 600;
high = 9000;
f = @(x) 10./sqrt((1+(x./fc1).ˆ2).*(1+(x./fc2).ˆ2));
g = @(y) 20*LOG10(f(y));
g(low)
g(high)

A.2 Low Pass Filter Calculations

K = 10.08;
w1 = 6613;
w2 = 8117;
wo = sqrt(w1*w2);
beta = w1+w2;
transfer = tf(K*woˆ2,[1 beta woˆ2]);
bodemag(transfer)
[magLow, phaseLow] = bode(transfer, 600*2*pi);
[magHigh, phaseHigh] = bode(transfer, 9000*2*pi);
magLowdB = 20*log10(magLow)
magHighdB = 20*log10(magHigh)
wc = bandwidth(transfer)
fc = wc / (2*pi);
plot(fc, 20*log10(10.08)−3, 'bo');
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A.3 High Pass Filter Calculations

K = 10.08;
w1 = 6613;
w2 = 8117;
wc = 4662;
fc = wc / (2*pi)
wo = sqrt(wcˆ4/(w1*w2));
beta = wcˆ2/w1 + wcˆ2/w2;
transfer = tf([K 0 0],[1 beta woˆ2]);
bodemag(transfer, 'b')
wc2 = bandwidth(transfer)
hold on
plot(fc, 20*log10(10.08)−3, 'ro');
legend('Transfer Function', 'Half−Power Frequency', 'Location', 'se');

A.4 Scaled Filter Calculations

K = 10.08;
w1 = 81168.8311;
w2 = 67750.677;
wo = sqrt((w1*w2));
beta = w1+w2;
transfer = tf(K*woˆ2,[1 beta woˆ2]);
bodemag(transfer)
wc = bandwidth(transfer)
fc = wc / (2*pi)
hold on
plot(fc, 20*log10(10.08)−3, 'go');
legend('Transfer Function', 'Half−Power Frequency', 'Location', 'sw');
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